
1DoE CoE Perf Portability Workshop 8/22/17

MEMORY ABSTRACTIONS BREAKOUT

• Moderators: Ian Karlin - LLNL, CJ Newburn – NVIDIA

• ~55 participants

2DoE CoE Perf Portability Workshop 8/22/17

libpmem

MEMORY ABSTRACTIONS - WIP
A work in progress

SICM mechanism
à OS

CHAI
Sidre

OpenMP Umpire

HiHAT

libnuma

TAPIOCA

hwloc
mmap

tcmalloc cudaMalloc*

memkind

jemalloc cnmem

SCR

SICM High-
level

3DoE CoE Perf Portability Workshop 8/22/17

PANEL QUESTIONS
• where your work fits in the diagram
• where we think there’s agreement

• abstraction, let people have their own customized interfaces, C ABI, traits
• collaboration, leverage arch features, driven by app usage models

• where we think there are opens
• How to do layering, collaboration, common abstractions; moving toward standards
• What traits and which are mutable
• Cost models and enumeration: unknown vendor info, what to enumerate
• Emerging ideas: asynchrony
• Memory and storage: common abstraction, floating point precision to save/restore,

policies, abstractions for data layout, gap between storage and memory (mmap & files)
• Introspection: what to reveal, how to deal with dynamism

• how we think we should move toward closure of those opens
• share requirements, proofs of convept, work with vendors

4

VENDOR-SPECIFIC SOLUTIONS FOR
MANAGING MEMORY

Do people actually need this? Is it actually worthwhile?

Want sensible portable defaults first, then add knobs.

We solved this problem with UVM. That made codes port beautifully to GPU.

CUDA UVM made sparse linear solvers work in Trilinos. Must be careful of

performance issues.

Strategy: CUDA UVM everywhere, get code running, then profile and reduce data

motion. Just starting with managed memory was hard.

a

5

FUTURE OF MULTI-LEVEL MEMORY

Differentiation between vendors and apps

Apps people have spoken its too hard to use

Strong scale to fit in fast memory

We should ask for a flatter space

Not getting MLM systems will limit total memory footprint

Could be the abstractions are wrong

KISS, but it didn’t work with HPF you ended up writing MPI like code

6

INTEROPERABILITY (COMPLETELY MISSED)

• All of these ideas need to work together in multi-physics codes

• Each library or physics package is choosing its own approach

• How are pointers passed between packages

7

WRAP-UP

• Do we want to see clear distillation of requirements and available options? -

• If so, are you willing to contribute to efforts of expressing those requirements? -

• If so, are you willing to work towards sharing code and infrastructure towards

layering?

• Easy to agree there's a problem; hard to act on this.

• Too many implementations is a huge waste of productivity.

8DoE CoE Perf Portability Workshop 8/22/17

DISCUSSION

• Can users define classes of memory, based on their own notion of which traits are

important and what the enumerated or characterized values are?

• Kokkos does something like this

• Allocators – in C++ standard

• Abstraction for data layout – Kokkos template, Anshu & Fortran

• Cost models – Dmitry: for allocation; CJ: count costs of asynchrony, throughput vs.

latency

• Policies – eviction

• Requirements: introspection

• Collaboration: CJ: open framework to compare/constrast code models & schedulers

9DoE CoE Perf Portability Workshop 8/22/17

ADDITIONAL TOPICS

• Audience reactions on the above topics and panelist positions

• Discuss what has been done and needs to be done to make solutions target multiple
architectures
• Rich: Retargetability: still need to reason, regardless of specifics

• Livermore: Using managed memory by default via jemalloc was hard (libibverbs

alloc/free mismatch)

• Unified memory solved a deep copy problem

• Trilinos wouldn’t have been successful on GPUs without unified memory; brought up perf

issues that needed to be reasoned about, need for fences

10DoE CoE Perf Portability Workshop 8/22/17

ADDITIONAL TOPICS

• Examine disruptions from technology trends, such as the increasing bandwidth gap
between HBM and DDR, or what happens when NVM is added to the mix.
• Ian: What does it take to achieve locality? Boosted locality > changed algo > production

• Mike Lang: Mix of simple and complex hierarchies

• Ian: Need clear language in RFPs to get what you want

• CJ: some apps will need dynamic scheduling, async allocation, deferred binding

• Si: keep flat where we can, add prefetching

• Interoperability – Adam @ Livermore
• Alloc/Free mismatch problem between allocators

11DoE CoE Perf Portability Workshop 8/22/17

DETAILS

• Comparison tables

• Panelist slides

• Additional notes

12DoE CoE Perf Portability Workshop 8/22/17

MEMORY ABSTRACTIONS - WIP
Interface Abstracts

implementations
Policies User facing

OpenMP Alloc, pinning Declare Alloc, resources,
access

CHAI Pointers Caching, layout?

Sidre Layout?, sharing

Umpire Alloc, enum Implement Alloc, move

SICM

memkind Alloc

HiHAT Alloc, enum,
layout,access,
resources/sharing

Declare

13DoE CoE Perf Portability Workshop 8/22/17

MEMORY IMPLEMENTATIONS - WIP
Interface Component Ubiquity Primary function

mmap OS Standardized Alloc, affinity

libnuma, numactl,
mbind

Library Standardized Affinity

hwloc Library Common Enumeration

TAPIOCA Library Research Block abstraction,
move

libpmem Library Common Alloc, access for
persistent mem

allocators library Variety Alloc

Scalable Checkpoint
Restart

Library Production Manage burst buffers

Photos placed in
horizontal position

with even amount of
white space

between photos and
header

Photos placed in horizontal position
with even amount of white space

between photos and header

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

OpenMP 5 Memory Mgmt.
(Breakout Slides)
2017 CoE Performance Portability Meeting
Denver, Colorado, USA
August 21, 2017

Stephen Olivier
Center for Computing Research, SNL-NM

SAND2017-9053 PE

Outline of the OpenMP Approach

§ Core features (near completion)
§ OpenMP allocators
§ allocate directive and clause
§ omp_alloc() and omp_free() API routines for C/C++
§ Default allocator
§ declare alloc directive and omp_alloc.h

§ Additional features (less mature)
§ Memory spaces and traits
§ User-defined custom allocators
§ Fallback options
§ Other additions: better C++ and NUMA support, querying, etc.

15

Agreed?

§ Performance portability should involve the vendors getting together with the the
users
§ Only vendors can choose what to share of their roadmaps, where memory strategies can

changing dramatically and rapidly
§ User perspective on the performance-portability tradeoff

§ Not possible to be completely future-proof, but consider how future architectures
can be supported
§ Need something soon, but don’t want to orphan the code later

§ Portability not just between vendors, but also languages
§ Fortran needs support too, and nice if it looks similar

§ Vendor implementations needed
§ GCC and LLVM are good too, but we need supported compilers

16

Open?

§ Should we have users describe desired properties for placement of their data OR
tell the system exactly where to put data?
§ Again, performance-portability tradeoff

§ How important is a decent standards-based solution?
§ Standards easier to include in procurements than the hard-to-define concept of “performance

portability”
§ Probably won’t be the best on any particular architecture but do something reasonable on many

architectures

17

18DoE CoE Perf Portability Workshop 8/22/17

TAPIOCA
Francois Tessier

19DoE CoE Perf Portability Workshop 8/22/17

SICM (SIMPLIFIED INTERFACE TO COMPLEX MEMORY)

• Two level library implementation + kernel mods
• High level application interface
• Lower level mechanism interface
• Kernel modifications (additional memory policy and multiple NUMA orders)

• Collaborators (GaTech, LLNL, ORNL) looking at higher-level interfaces, making
decisions for higher-level apps

• Fleshed out some of what was missing in memkind across different archs
• Policies

• How you spill
• Seeking to push minor mods to the linux kernel

Mike Lang

20DoE CoE Perf Portability Workshop 8/22/17

UMPIRE, RAJA, CHAI, SIDRE

• Sidre
• mesh and field data with schema that enables interop, used @ Livermore
• Use attributes for data

• Agreements
• Let people have their own interface flavor

• Opens
• What do you expose from HW

David Beckingsdale

21DoE CoE Perf Portability Workshop 8/22/17

SCALABLE CHECKPOINT RESTART (SCR)

• Fit

• Part of storage hierarchy, efficient path from memory to files

• Agreements

• Similar strategies as for memory abstraction, but code not shared

• Opens

• Gap where storage meets memory. mmap doesn’t handle need for accessing files.

• Floating point precision that needs to be stored

Elsa Gonsiorowski, LLLNL

22DoE CoE Perf Portability Workshop 8/22/17

OPENMP AND MEMORY CONSTRAINTS

• Fit

• Just above mmap or malloc or just below user

• Agreements

• Allocate and deallocate (oop, garbage collection)

• Vertical and horizontal placement

• Opens

• Bottom-level target-specific interfaces; “X won’t work with AMD GPU, Y won’t work with
NVIDIA…"

• Closure

Tom Scogland

23DoE CoE Perf Portability Workshop 8/22/17

HIHAT

• where your work fits in the diagram

• where we think there’s agreement
• abstraction, collaboration, leverage arch features, multi-language (C ABI)

• where we think there are opens
• layering, collaboration, async, traits, mutability, standards, unknown vendor info, what

to enumerate

• how we think we should move toward closure of those opens

• share requirements, PoCs, vendor impl

CJ Newburn

24DoE CoE Perf Portability Workshop 8/22/17

DISCUSSION

• Can users define classes of memory, based on their own notion of which traits are

important and what the enumerated or characterized values are?

• Kokkos does something like this

• Allocators – in C++ standard

• Abstraction for data layout – Kokkos template, Anshu & Fortran

• Cost models – Dmitry: for allocation; CJ: count costs of asynchrony, throughput vs.

latency

• Policies – eviction

• Requirements: introspection

• Collaboration: CJ: open framework to compare/constrast code models & schedulers

25DoE CoE Perf Portability Workshop 8/22/17

ADDITIONAL TOPICS

• Audience reactions on the above topics and panelist positions

• Discuss what has been done and needs to be done to make solutions target multiple
architectures
• Rich: Retargetability: still need to reason, regardless of specifics

• Livermore: Using managed memory by default via jemalloc was hard (libibverbs

alloc/free mismatch)

• Unified memory solved a deep copy problem

• Trilinos wouldn’t have been successful on GPUs without unified memory; brought up perf

issues that needed to be reasoned about, need for fences

26DoE CoE Perf Portability Workshop 8/22/17

ADDITIONAL TOPICS

• Examine disruptions from technology trends, such as the increasing bandwidth gap
between HBM and DDR, or what happens when NVM is added to the mix.
• Ian: What does it take to achieve locality? Boosted locality > changed algo > production

• Mike Lang: Mix of simple and complex hierarchies

• Ian: Need clear language in RFPs to get what you want

• CJ: some apps will need dynamic scheduling, async allocation, deferred binding

• Si: keep flat where we can, add prefetching

• Interoperability – Adam @ Livermore
• Alloc/Free mismatch problem between allocators

